Scrape-off Layer Particle and Energy Transport with varying SOL Collisionality

Supported by

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL PPPI PSI Princeton U Purdue U SNI Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin WWPHS North

T.K. Gray^{1,2}, M.A. Jaworski³, and A.G. Mclean² ¹Oak Ridge Institute for Science and Education (ORISE) ²Oak Ridge National Laboratory ³Princeton Plasma Physics Laboratory

> NSTX Results Forum 2011-2012 Princeton Plasma Physics Laboratory March 15 – 18, 2011

U.S. DEPARTMENT OF

FNERGY Science

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache IPP. Jülich **IPP**, Garching ASCR, Czech Rep U Quebec

Office of

Motivation: Lithium has been shown to cause a contraction in SOL width

- Recommendation from the PAC to better understand SOL width contraction
- Type V ELMs eliminated from lithiated discharges
 - Some sporadic type I ELMs are still present
 - Responsible for some of the contraction in IR profiles
- λ_q^{div} contracts further with increasing lithium deposition

	0 mg	150 mg	300 mg
λ_q^{div} (cm)	14.1	13	7
λ_q^{mid} (cm)	0.98	0.74	0.37

2

Measure the SOL width from IR, optical and particle profiles simultaneously

- Will inform on physics leading to contraction of λ_{a}
 - Recommended for study by the PAC
 - Impacts NSTX-U operation
- Determine whether particle flux profiles also contract similar to λ_q
- Probes will help better determine divertor operating regime
 - Conduction, sheath limited or detached
- Provide insight into edge turbulence and the role it plays in setting λ_a
- D_α measurements qualitatively show a similar trend with IR measurements
 - Quantitative measurements require knowledge of $\rm n_e$ and $\rm T_e$

• Interest from modeling community on this XP

- OEDGE: M. Jaworski (PPPL)
- SOLT: J. Myra (Lodestar)

Proposed Run Plan: 1 day (0.5 day minimum)

- Run a medium δ shape with OSP on or near the high density Langmuir Probe array
 - Optimize OSP location to provide the best divertor profiles of $n_{\rm e}$ and $T_{\rm e}$
- Scan I_p and SOL collisionality at 2-3 Lithium deposition rates
 - Collisionality will be scanned with changes in $I_{\rm p}$ (L_{\parallel}) as well as the addition of midplane gas puffing
 - I_p = 0.8, 1.0, and 1.2 MA (if possible)
 - Li depositon rates = 100, 200 and 300 mg
 - Exact number of points in ${\rm I}_{\rm p}$ and Li scans dependent on run time allocation

